# **Interior Watershed Assessment Update**

# McKuskey Creek Watershed

## **1.0 WATERSHED DESCRIPTIVE INFORMATION**

Table 1.1 Summary information – Biophysical

| Size<br>(km <sup>2</sup> ) | BEC<br>Zones              | Elevation<br>Range | H <sub>60</sub><br>Elevation | Stream<br>Density  | Distribution of slope gradients within the watershed (% of watershed) |                    |                 |            |  |
|----------------------------|---------------------------|--------------------|------------------------------|--------------------|-----------------------------------------------------------------------|--------------------|-----------------|------------|--|
|                            |                           | (m)                | (m)                          | km/km <sup>2</sup> | <10% slope                                                            | 10 to 30%<br>slope | 30 to 60% slope | >60% slope |  |
| 309.20                     | ICHwk2<br>ESSFwk1<br>/wc3 | 915 -<br>2451      | 1445                         | 1.81               | 23.08                                                                 | 45.16              | 28.21           | 3.55       |  |

Table 1.2. Characteristics of main stream reaches – (assessment is based on a combination of air-photo interpretations, TRIM maps, helicopter over-flight and various reports).

| Reach ID | Minimum   | Maximum   | Reach  | Reach    | Stream                    |
|----------|-----------|-----------|--------|----------|---------------------------|
|          | Elevation | Elevation | Length | Gradient | Disturbance Assessment    |
|          | (m)       | (m)       | (m)    | (%)      |                           |
| Main-R1  | 917.073   | 920       | 2242   | 0.13%    | Stable, irregular channel |
| Main-R2  | 920       | 922.818   | 1866   | 0.15%    | Stable, irregular channel |
| Main-R3  | 922.818   | 923       | 7064   | 0.00%    | Stable, irregular channel |
| Main-R4  | 923       | 939.995   | 4291   | 0.40%    | Stable, irregular channel |
| Main-R5  | 939.995   | 940.4     | 2401   | 0.02%    | Stable, irregular channel |
| Main-R6  | 940.4     | 940.006   | 10800  | 0.00%    | Lake                      |
| Main-R7  | 940.006   | 980.726   | 2882   | 1.41%    | stable                    |
| Main-R8  | 980.726   | 998.306   | 1386   | 1.27%    | stable                    |
| Main-R9  | 998.306   | 1023.24   | 3045   | 0.82%    | stable                    |
| Main-R10 | 1023.24   | 1099.61   | 3163   | 2.41%    | stable                    |
| Main-R11 | 1099.61   | 1121.46   | 1086   | 2.01%    | stable                    |
| Main-R12 | 1121.46   | 1282.97   | 2643   | 6.11%    | stable                    |
| Main-R13 | 1282.97   | 1365.22   | 2270   | 3.62%    | stable                    |
| Main-R14 | 1365.22   | 1727.51   | 3603   | 10.06%   | stable                    |
|          |           |           |        |          |                           |

RPg = Riffle-Pool gravel morphology

#### 2.0 WATERSHED HARVESTING, ROADS AND LAND-USE HISTORY

#### Table 2.1. McKuskey Creek Watershed

|        |                                |                    | Peak Flow Index        |                                 | Road Density Active<br>(km/km <sup>2</sup> ) |                       | Stream Crossing density<br>active (#/km <sup>2</sup> ) |                | Road Density De-active<br>(km/km <sup>2</sup> ) |                   |                      |                   |                      |
|--------|--------------------------------|--------------------|------------------------|---------------------------------|----------------------------------------------|-----------------------|--------------------------------------------------------|----------------|-------------------------------------------------|-------------------|----------------------|-------------------|----------------------|
| Privat | e Total<br>harvest<br>2002 (%) | Current<br>ECA (%) | Planned<br>Harvest (%) | Current<br>ECA below<br>H60 (%) | Current<br>ECA Above<br>H60 (%)              | Current<br>(2002) (%) | End of FDP<br>(2007)(%)                                | Current (2002) | End of FDP<br>(2007)                            | Current<br>(2002) | End of FDP<br>(2007) | Current<br>(2002) | End of FDP<br>(2007) |
| 0      | 12.01                          | 19.30              | 2.82                   | 12.8                            | 6.5                                          | 22.5                  | 25.5                                                   | 0.44           | 0.51                                            | 0.28              | 0.37                 | 0.13              | 0.17                 |

#### **3.0 SUMMARY OF EXTENT OF RIPARIAN REMOVAL (agriculture and forestry)**

Table 3.1. McKuskey Watershed

| Watershed name | Length (km) of<br>riparian removal<br>on small<br>tributaries (<5m<br>in width) | Length (km) of<br>riparian removal<br>on large<br>tributaries (>5m) | % Riparian<br>removal of all<br>tributaries | Length (km) of<br>riparian removal<br>on mainstem | % Riparian<br>removal of<br>mainstem | Total length of all<br>tributaries (from<br>Trim) (km) | Total length of mainstem (km) |
|----------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|--------------------------------------|--------------------------------------------------------|-------------------------------|
| McKuskey       | 44.90                                                                           | 0.60                                                                | 8.14                                        | 0.00                                              | 0.00                                 | 559.20                                                 | 30.37                         |

#### 4.0 SUMMARY OF LARGE SEDIMENT SOURCES

#### Table 4.1. McKuskey Watershed

| Watershed | Large natural<br>sediment sources |                                 | Large natural sediment<br>sources directly<br>connected to a stream |                                 | Large land-use related sediment sources |                                 | Large land-use related<br>sediment sources<br>directly connected to a<br>stream |                                 | Large sediment<br>sources |                                 |
|-----------|-----------------------------------|---------------------------------|---------------------------------------------------------------------|---------------------------------|-----------------------------------------|---------------------------------|---------------------------------------------------------------------------------|---------------------------------|---------------------------|---------------------------------|
| Name      | number                            | density<br>(#/km <sup>2</sup> ) | number                                                              | density<br>(#/km <sup>2</sup> ) | number                                  | density<br>(#/km <sup>2</sup> ) | number                                                                          | density<br>(#/km <sup>2</sup> ) | number                    | density<br>(#/km <sup>2</sup> ) |
| McKuskey  | 28                                | 0.091                           | 14                                                                  | 0.046                           | 4                                       | 0.013                           | 4                                                                               | 0.013                           | 34                        | 0.110                           |

#### 5.0 SUMMARY OF LAND-USE ACTIVITIES ON UNSTABLE TERRAIN

#### Table 5.1. McKuskey Watershed

| Watershed | 0      | of road on<br>terrain (km) |           | ut blocks on<br>errain (km <sup>2</sup> ) | Road density on<br>unstable terrain | Source of information for stability assessment |  |
|-----------|--------|----------------------------|-----------|-------------------------------------------|-------------------------------------|------------------------------------------------|--|
|           | Active | Proposed                   | Harvested | Proposed                                  | $(\text{km/km}^2)$                  | -                                              |  |
| McKuskey  | 0      | 0                          | 0         | 0                                         | 0.0000                              | slope>60%                                      |  |

#### 6.0 SUMMARY OF ROAD RELATED SOURCES OF SURFACE EROSION

| Table 6.1 McKuskey Watershed - summary of stream crossing sediment source survey – |                                               |                     |                                   |  |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------|--|--|--|--|--|
| Number of crossings<br>surveyed                                                    | Estimated total # of<br>crossings (TRIM maps) | Percentage surveyed | Watershed Size (km <sup>2</sup> ) |  |  |  |  |  |
| 48                                                                                 | 100                                           | 48.00%              | 309.2                             |  |  |  |  |  |

|            | Table 6.2 Summary of Water Quality Concern Ratings (WQCR) – McKuskey Watershed |        |            |        |            |        |            |  |  |  |  |
|------------|--------------------------------------------------------------------------------|--------|------------|--------|------------|--------|------------|--|--|--|--|
| No Concern |                                                                                | Low    |            | Med    | lium       | High   |            |  |  |  |  |
| Number     | Percentage                                                                     | Number | Percentage | Number | Percentage | Number | Percentage |  |  |  |  |
| 16         | 33.33                                                                          | 14     | 29.17      | 6      | 12.50      | 12     | 25.00      |  |  |  |  |

|                      | Table 6. | .3 Summary o | of Water Qua | lity Concern | Ratings by St | tream Size - N | IcKuskey Wa | atershed            | # of      |
|----------------------|----------|--------------|--------------|--------------|---------------|----------------|-------------|---------------------|-----------|
| Stream<br>Width None |          | Low          |              | Medium       |               | High           |             | streams<br>surveyed |           |
| Class                | Number   | Percentage   | Number       | Percentage   | Number        | Percentage     | Number      | Percentage          | per class |
| 1                    | 2        | 100.00%      | 0            | 0.00%        |               | 0.00%          | 0           | 0.00%               | 2         |
| 2                    | 3        | 60.00%       | 1            | 20.00%       | 1             | 20.00%         | 0           | 0.00%               | 5         |
| 3                    | 5        | 62.50%       | 2            | 25.00%       | 0             | 0.00%          | 1           | 12.50%              | 8         |
| 4                    | 6        | 21.43%       | 9            | 32.14%       | 4             | 14.29%         | 9           | 32.14%              | 28        |
| 5                    | 0        | 0.00%        | 2            | 40.00%       | 1             | 20.00%         | 2           | 40.00%              | 5         |

| Table 6    | .4 ESC Summary - McKuskey     |  |  |  |
|------------|-------------------------------|--|--|--|
| WQCR       | "Equivalent" number of stream |  |  |  |
| crossings  |                               |  |  |  |
| No Concern | 0.0                           |  |  |  |
| Low        | 8.8                           |  |  |  |
| Moderate   | 8.8                           |  |  |  |
| High       | 25.0                          |  |  |  |
| Total      | 42.5                          |  |  |  |

| Table 6.5 Surface erosion hazard – McKuskey Watershed          |                        |  |  |  |  |  |
|----------------------------------------------------------------|------------------------|--|--|--|--|--|
| Equivalent stream crossing<br>density (xings/km <sup>2</sup> ) | Surface Erosion Hazard |  |  |  |  |  |
| 0.14                                                           | LOW                    |  |  |  |  |  |

# 7.0 SUMMARY OF MAINSTEM CHANNEL CONDITIONS

| Reach ID | Reach         | Reach           | Length           | % of                 | Level of               | Probable cause |
|----------|---------------|-----------------|------------------|----------------------|------------------------|----------------|
|          | Length<br>(m) | Gradient<br>(%) | disturbed<br>(m) | channel<br>disturbed | channel<br>disturbance | of disturbance |
| Main-R1  | 2242          | 0.1%            | 0                | 0                    | Low                    | N/a            |
| Main-R2  | 1866          | 0.2%            | 0                | 0                    | Low                    | N/a            |
| Main-R3  | 7064          | 0.0%            | 0                | 0                    | Low                    | N/a            |
| Main-R4  | 4291          | 0.4%            | 0                | 0                    | Low                    | N/a            |
| Main-R5  | 2401          | 0.0%            | 0                | 0                    | Low                    | N/a            |
| Main-R6  | 10800         | 0.0%            | 0                | 0                    | Low                    | N/a            |
| Main-R7  | 2882          | 1.4%            | 0                | 0                    | Low                    | N/a            |
| Main-R8  | 1386          | 1.3%            | 0                | 0                    | Low                    | N/a            |
| Main-R9  | 3045          | 0.8%            | 0                | 0                    | Low                    | N/a            |
| Main-R10 | 3163          | 2.4%            | 0                | 0                    | Low                    | N/a            |
| Main-R11 | 1086          | 2.0%            | 0                | 0                    | Low                    | N/a            |
| Main-R12 | 2643          | 6.1%            | 0                | 0                    | Low                    | N/a            |
| Main-R13 | 2270          | 3.6%            | 0                | 0                    | Low                    | N/a            |
| Main-R14 | 3603          | 10.1%           | 0                | 0                    | Low                    | N/a            |

## Table 7.1. Extent of channel disturbance

### 8.0 SUMMARY OF FISHERIES RESOURCES IN THE WATERSHED

Table 8.1. Documented fish species presence

| Category                | Common Name          | Latin Name          | Species<br>Code | Reference                |
|-------------------------|----------------------|---------------------|-----------------|--------------------------|
| Freshwater game species | Rainbow Trout        | Oncorhynchus mykiss | RB              | Fish Wizard <sup>1</sup> |
| N/A                     | Unidentified Species | N/A                 | N/A             | Fish Wizard <sup>1</sup> |

<sup>1</sup>Fish Wizard available at http://pisces.env.gov.bc.ca

#### 9.0 SUMMARY OF HAZARDS FOR THE McKuskey WATERSHED

| Table 9.1. | Watershed | assessment hazards |
|------------|-----------|--------------------|
|------------|-----------|--------------------|

| Watershed | Sub-<br>basin | Increases<br>in peak-<br>flows<br>(Current/<br>Proposed) | Reduction<br>in riparian<br>functions | Large<br>logging<br>related<br>sediment<br>sources | Road<br>related<br>sediment<br>sources<br>(field<br>work) | Accelerated<br>surface<br>erosion<br>from GIS<br>(Current/<br>proposed) | Accelerated<br>mass<br>wasting | Generalized<br>Channel<br>Disturbance <sup>1</sup> |
|-----------|---------------|----------------------------------------------------------|---------------------------------------|----------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|
| McKuskey  |               | VL/L                                                     | L                                     | Н                                                  | L                                                         | M/M                                                                     | VL                             | 1                                                  |

<sup>1</sup> Note: Generalized channel disturbance codes: 1 = no disturbance identified, 2 = localized channel disturbance, 3 = minor localized land-use related disturbance, 4 = moderate land-use related channel disturbance, 5 = extensive land-use related channel disturbance.

<sup>2</sup> Note: Hazard ratings: VL=very low, L=low, M=moderate, H=high, VH=very high

#### **10.0 INTERPRETATIONS**

#### **10.1 Peak flow Hazards**

The peak flow hazard in McKuskey watershed is currently **Very Low** (PFI=22.5%) and will increase to a hazard rating of **Low** (PFI=25.5%) by the end of the current forest development plan. This includes the large areas that were burnt by wildfires and salvaged several decades ago. All reaches of the mainstem below the lake (where most of the logging has occurred) are stable and do not show any signs of accelerated erosion. Crooked Lake provides a very effective buffer for increased peak flows that may occur from forest harvesting in the upper watershed. There are no significant concerns for increased peak flows in the McKuskey watershed.

#### **10.2 Hazards Associated with a loss in Riparian Functions**

There has been no riparian harvesting along the mainstem of McKuskey Creek, however several of it's tributaries have experienced extensive riparian harvesting. This may have caused localized negative impacts on fish habitat. The overall hazard assessment for McKuskey Creek watershed is **Low.** Localized channel instability, caused mostly by riparian harvest and large sediment sources , was identified in Cosmoskey and Skyes-Fire Creek (photos #1417 and #1430).

#### **10.3 Hazards Associated with Large Sediment Sources**

There are several large forestry related sediment sources that are directly connected to a stream channel in this watershed (Table 4.1 and Appendix 2). This has resulted in a **High** hazard assessment for this IWAP indicator. Many of these sediment sources have been addressed by the Watershed Restoration Program and are now stabilizing and producing less sediment to the stream system. However Smith (2002) reports that restoration work in the McKuskey watershed (mostly Skyes Fire and Cosmosky) has had mixed results in improving slope stability and reducing sediment input to adjacent streams. Some of the landslides may be causing localized negative impacts on fish habitat in the tributary watersheds where they have occurred, but I believe that the impacts to the lower reaches of McKuskey Creek are probably insignificant, although localized impacts may not.

#### 10.4 Hazards Associated with Road Related Surface Erosion

Almost 50% of all stream crossings identified on TRIM maps were surveyed for sources of surface erosion. We believe that there were less crossings in the field than indicated on TRIM maps and consequently our survey intensity is probably significantly higher than 50%. Also, many stream crossings identified on non-status roads are now inaccessible because of the dense re-growth on the road right of way. It is likely that most (if not all) of these crossings are no longer sediment sources. We believe that we surveyed more than 85% of all accessible (and potential sediment producing) stream crossings.

Our survey identified that 37% of the crossings surveyed had medium or high water quality concern ratings (WQCR) relative to the production of fine sediments to the stream system. (Table 6.2). The location of these is identified on the accompanying maps and the details are provided in the database (Appendix 3). Although this percentage is relatively high, the total equivalent stream crossing density remains low, simply because of the large size of the watershed. The surface erosion hazard for this watershed is consequently **Low.** 

# **10.5 Hazards Associated with Accelerated Mass Wasting (from logging on steep slopes).**

The assessed hazard for this IWAP indicator is **Very Low** for the McKuskey Creek watershed. This is simply because the mapping indicates that there is no forest harvesting or road building of slopes greater than 60%. The 60% slope indicator was used because there is no significant amount of slope stability mapping available for this watershed. Although the 60% mapping indicates no hazard, there are obviously some localized slope stability problems in this watershed as evidenced by the failure that occurred in the spring of 2002 (photograph # 1375). The "crude" mapping of slope stability by using the 60% method does not identify these localized problems.

## **10.6 Watershed Cumulative Effects and Channel Stability**

It is my opinion that there are no significant cumulative effects and problems associated with channel stability near the mouth of McKuskey Creek (Point of Interest). However, I do believe that there are a few tributary watersheds the have been significantly impacted by past forest harvesting practices. These would certainly include Skyes-Fire creek and the lower reaches of Cosmoskey Creek. There are also a few small tributaries that were heavily harvested in the past decades and may have experienced localized negative impacts to fish habitat. These are located on the west side of the watershed and flow into reach R#3 of the mainstem of McKuskey Creek. Continued watershed restoration activities should continue in these small watersheds and further harvesting should be delayed in these tributary watersheds until the stream channels recover. Smith (2002) reports that the recontouring of the road and trail prisms in the Skyes Fire drainage did not reduce the occurrence of new slope failures. He also reports that rehabilitation and further assessment work is currently being undertaken at these sites.

# **11.0 RECOMMENDATIONS**

#### **11.1) Recommendations for the Forest Development Plan (landscape level)**

It is my opinion that there are no significant rate-of-cut issues when considering the McKuskey Creek watershed as a whole (landscape unit). The current ECA is very low and the amount of planned harvest is not very large. The mainstem of the channel is very stable and there has been no riparian harvest along it. However, there are certainly some site specific issues that must continue to be addressed to manage water quality in this watershed. These are discussed in the next section.

#### 11.2) Recommendations for Site Specific Activities (site level)

- 1. Stream crossings that were rated with a Medium or High WQCR should be visited in the field and site specific prescriptions made to further control erosion and sediment delivery. It is important to note that most of the crossings that had concerns were for small streams (class 4 and 5 stream width Table 6.5). Crossings over large streams were generally well built and erosion and sediment control was generally adequate.
- 2. There are some localized slope stability problems in this watershed as evidenced by the number of large sediment sources and recent failures. Thus it is important that site level slope stability assessments continue to be done on moderate and steep slope areas (slopes greater than 50% in the fine textured soils). The use of qualified terrain specialist and geoscientists is important for the management of steep terrain.
- 3. Uncompleted (and ineffective) watershed restoration activities in Skyes-Fire Creek watershed should be given a high priority for completion.
- 4. Erosion control around crossings of small streams should be given more attention as forest harvesting proceeds in this watershed. It would be a good idea to develop a series of specific erosion control procedures that should be implemented for crossings of small streams (i.e. Erosion and Sediment Control Plan). These procedures could be provided to the road contractor and the performance of the contractor and the procedure itself could be evaluated in the coming years.
- 5. Maintain effective Erosion and Sediment Control plans for the McKuskey watershed. This would include: a) Development of a plan with precise objectives and standards and clear operating procedures, b) clearly define the types of erosion and sediment control practices that need to be implemented, c) regular maintenance of any ESC structure that has been installed, d) regular field monitoring to evaluate the effectiveness of the plan.

| ID          | Channel<br>Width | Stream<br>Type | One or 2<br>sided | Length of<br>RL (km) | Landuse |
|-------------|------------------|----------------|-------------------|----------------------|---------|
| McKusRL-001 | 1                | 2              | 1                 | 0.5991               | 1       |
| McKusRL-002 | 4                | 2              | 2                 | 0.3841               | 1       |
| McKusRL-003 | 4                | 2              | 2                 | 0.2355               | 1       |
| McKusRL-005 | 3                | 2              | 2                 | 3.0538               | 1       |
| McKusRL_004 | 4                | 3              | 2                 | 0.8434               | 1       |
| McKusRL-006 | 4                | 3              | 2                 | 0.2947               | 1       |
| McKusRL-007 | 4                | 3              | 2                 | 1.0566               | 1       |
| McKusRL-008 | 4                | 2              | 2                 | 0.9015               | 1       |
| McKusRL-009 | 4                | 2              | 2                 | 1.2793               | 1       |
| McKusRL-010 | 4                | 2              | 2                 | 1.1296               | 1       |
| McKusRL-011 | 4                | 2              | 2                 | 1.1656               | 1       |
| McKusRL-012 | 4                | 2              | 2                 | 1.6048               | 1       |
| McKusRL-013 | 4                | 2              | 2                 | 1.8747               | 1       |
| McKusRL-016 | 4                | 2              | 2                 | 0.6532               | 1       |
| McKusRL-017 | 4                | 3              | 2                 | 0.1995               | 1       |
| McKusRL-015 | 4                | 3              | 2                 | 0.8406               | 1       |
| McKusRL-018 | 4                | 3              | 2                 | 0.7866               | 1       |
| MckusRL-019 | 4                | 2              | 2                 | 0.7821               | 1       |
| McKusRL-020 | 4                | 2              | 2                 | 1.4426               | 1       |
| McKusRL-021 | 4                | 3              | 2                 | 0.6708               | 1       |
| McKusRL-022 | 4                | 2              | 2                 | 0.7893               | 1       |
| McKusRL-023 | 4                | 2              | 2                 | 1.1811               | 1       |
| McKusRL-024 | 4                | 2              | 2                 | 1.0936               | 1       |
| McKusRL-025 | 4                | 3              | 2                 | 0.9024               | 1       |
| McKusRL-026 | 4                | 2              | 2                 | 0.9063               | 1       |
| McKusRL-027 | 4                | 3              | 2                 | 0.2497               | 1       |
| McKusRL-028 | 4                | 3              | 2                 | 0.6137               | 1       |
| McKusRL-029 | 4                | 2              | 2                 | 1.4959               | 1       |
| McKusRL-030 | 4                | 2              | 2                 | 0.3476               | 1       |
| McKusRL-031 | 4                | 2              | 2                 | 0.361                | 1       |
| McKusRL-032 | 4                | 2              | 2                 | 0.2628               | 1       |
| McKusRL-033 | 4                | 2              | 2                 | 0.8167               | 1       |
| McKusRL-034 | 4                | 2              | 2                 | 0.472                | 1       |
| McKusRL-035 | 4                | 3              | 2                 | 0.8334               | 1       |
| McKusRL-036 | 4                | 3              | 2                 | 0.4604               | 1       |
| McKusRL-037 | 4                | 3              | 2                 | 0.7699               | 1       |

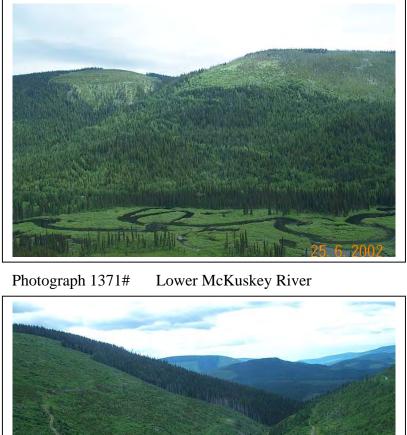
# **APPENDIX 1 – Database of disturbed riparian areas**

| McKusRL-038 | 4 | 3 | 2 | 0.3639 | 1 |
|-------------|---|---|---|--------|---|
| McKusRL-039 | 4 | 3 | 2 | 0.6674 | 1 |
| McKusRL-040 | 4 | 3 | 2 | 0.6472 | 1 |
| McKusRL-041 | 3 | 3 | 2 | 2.3245 | 1 |
| McKusRL-042 | 4 | 3 | 2 | 0.3833 | 1 |
| McKusRL-043 | 3 | 3 | 2 | 2.2491 | 1 |
| McKusRL-044 | 4 | 3 | 2 | 1.1173 | 1 |
| McKusRL-045 | 4 | 3 | 2 | 0.4062 | 1 |
| McKusRL-046 | 4 | 3 | 2 | 0.7609 | 1 |
| McKusRL-047 | 4 | 3 | 2 | 0.3741 | 1 |
| McKusRL-048 | 3 | 3 | 2 | 0.3504 | 1 |
| McKusRL-049 | 4 | 3 | 2 | 0.2177 | 1 |
| McKusRL-050 | 4 | 3 | 2 | 0.2831 | 1 |
| McKusRL-051 | 4 | 3 | 2 | 0.9645 | 1 |
| McKusRL-052 | 3 | 3 | 2 | 0.36   | 1 |
| McKusRL-053 | 4 | 3 | 2 | 0.2002 | 1 |
| McKusRL-054 | 4 | 3 | 2 | 0.7896 | 1 |
| McKusRL-055 | 4 | 3 | 2 | 0.2844 | 1 |
| McKusRL-056 | 4 | 3 | 2 | 0.2585 | 1 |
| McKusRL-057 | 4 | 3 | 2 | 0.3415 | 1 |
| McKusRL-058 | 4 | 3 | 2 | 0.5836 | 1 |
| McKusRL-059 | 4 | 3 | 2 | 0.1354 | 1 |
| McKusRL-060 | 4 | 3 | 2 | 0.0764 | 1 |

| i <del></del>   | 1    | 1     |                |                           |                   |
|-----------------|------|-------|----------------|---------------------------|-------------------|
| ID              | Туре | Cause | Deliverability | Degree of<br>Revegetation | Activity<br>Level |
| McKusLS-<br>001 | 5    | 3     | 1              | 2                         | 2                 |
| McKusLS-<br>003 | 4    | 3     | 2              | 1                         | 1                 |
| McKusLS-<br>002 | 4    | 3     | 2              | 1                         | 1                 |
| McKusLS-<br>008 | 5    | 3     | 1              | 2                         | 2                 |
| McKusLS-<br>004 | 4    | 3     | 3              | 1                         | 1                 |
| McKusLS-<br>009 | 4    | 3     | 1              | 2                         | 2                 |
| McKusRL-<br>006 | 5    | 8     | 3              | 2                         | 2                 |
| McKusLS-<br>005 | 4    | 3     | 3              | 1                         | 1                 |
| McKusLS-<br>007 | 4    | 5     | 3              | 1                         | 1                 |
| McKusLS-<br>010 | 4    | 3     | 1              | 2                         | 2                 |
| McKusLS-<br>015 | 4    | 3     | 3              | 2                         | 2                 |
| McKusLS-<br>016 | 4    | 3     | 2              | 2                         | 2                 |
| McKusLS-<br>013 | 4    | 3     | 2              | 2                         | 2                 |
| McKusLS-<br>011 | 4    | 3     | 3              | 2                         | 2                 |
| McKusLS-<br>012 | 4    | 3     | 2              | 3                         | 2                 |
| McKusLS-<br>017 | 4    | 3     | 3              | 1                         | 1                 |
| McKusLS-<br>018 | 4    | 3     | 2              | 2                         | 2                 |
| McKusLS-<br>019 | 4    | 3     | 2              | 2                         | 2                 |
| McKusLS-<br>021 | 4    | 2     | 3              | 1                         | 3                 |
| McKusLS-<br>024 | 4    | 4     | 3              | 2                         | 2                 |

**APPENDIX 2 – Database of large sediment sources** 

| McKusLS-<br>025 | 5 | 2 | 2 | 2 | 2 |
|-----------------|---|---|---|---|---|
| McKusLS-<br>022 | 5 | 8 | 2 | 2 | 2 |
| McKusLS-<br>014 | 4 | 5 | 3 | 1 | 3 |
| McKusLS-<br>026 | 7 | 4 | 3 | 2 | 3 |
| McKusLS-<br>027 | 4 | 3 | 1 | 2 | 1 |
| McKusLS-<br>028 | 7 | 4 | 1 | 1 | 3 |
| McKusLS-<br>029 | 3 | 6 | 3 | 2 | 1 |
| McKusLS-<br>030 | 5 | 6 | 3 | 2 | 3 |
| McKusLS-<br>031 | 5 | 5 | 3 | 1 | 3 |
| McKusLS-<br>032 | 3 | 3 | 3 | 2 | 2 |
| McKusLS-<br>033 | 5 | 1 | 2 | 1 | 3 |
| McKusLS-<br>034 | 4 | 2 | 3 | 1 | 3 |
| McKusLS-<br>035 | 3 | 2 | 3 | 1 | 3 |
| McKusLS-<br>036 | 3 | 2 | 3 | 1 | 3 |

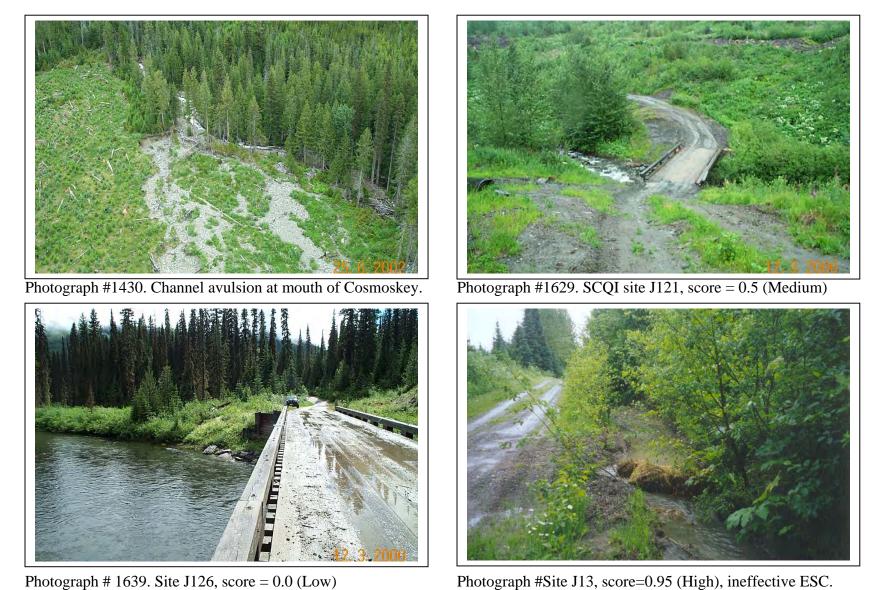

| Sub Basin | Cros-   | UTM     | UTM      | Structure | Size of | Crossing | WQCR | Stream | Stream   |
|-----------|---------|---------|----------|-----------|---------|----------|------|--------|----------|
|           | sing ID | Easting | Northing | type      | Culver  | Erosion  |      | width  | gradient |
|           | C       | C       | )        | • 1       | t       | Score    |      | Class  | Class    |
| McKuskey  | J100    | 655841  | 5790242  | 5         | 6       | 0.0208   | None | 1      | 1        |
| McKuskey  | J101    | 663430  | 5788986  | s.pt.     |         | 0        | s.pt |        | 0        |
| McKuskey  | J102    | 662216  | 5789366  | 5         | 400     | 0.4835   | Med  | 5      | 4        |
| McKuskey  | J103    | 661329  | 5789405  | 5         | 600     | 0.375    | Low  | 4      | 3        |
| McKuskey  | J104    | 660591  | 5789321  | 1         |         | 0.125    | Low  | 2      | 6        |
| McKuskey  | J105    | 660498  | 5789333  | 5         | 600     | 0.0208   | None | 4      | 3        |
| McKuskey  | J106    | 660482  | 5789299  | 5         | 600     | 0.882    | High | 4      | 3        |
| McKuskey  | J107    | 660153  | 5789431  | 1         |         | 0.0208   | None | 3      | 3        |
| McKuskey  | J108    | 659666  | 5789489  | 5         | 400     | 0.2343   | Low  | 5      | 3        |
| McKuskey  | J109    | 658872  | 5789801  | 5         | 450     | 0.3675   | Low  | 5      | 3        |
| McKuskey  | J110    | 658710  | 5789858  | 5         | 800     | 0.3675   | Low  | 4      | 3        |
| McKuskey  | J111    | 657298  | 5790655  | 5         | 800     | 0.2037   | Low  | 4      | 2        |
| McKuskey  | J112    | 656568  | 5790974  | 5         | 1000    | 0.0208   | None | 3      | 2        |
| McKuskey  | J113    | 654446  | 5794325  | 5         | 800     | 0.0208   | None | 4      | 1        |
| McKuskey  | J114    | 654394  | 5794877  | 1         |         | 0.0208   | None | 2      | 1        |
| McKuskey  | J115    | 655215  | 5794446  | 5         | 400     | 0.125    | Low  | 3      | 1        |
| McKuskey  | J116    | 654394  | 5795116  | 1         |         | 0.0208   | None | 2      | 2        |
| McKuskey  | J117    | 653757  | 5795731  | 1         |         | 0.0208   | None | 3      | 2        |
| McKuskey  | J118    | 651735  | 5796605  | 1         |         | 0.0208   | None | 2      | 2        |
| McKuskey  | J119    | 650685  | 5797738  | s.pt.     |         | 0        | s.pt |        | 0        |
| McKuskey  | J120    | 651900  | 5798266  | s.pt.     |         | 0        | s.pt |        | 0        |
| McKuskey  | J121    | 652116  | 5798833  | 1         |         | 0.5      | Med  | 2      | 3        |
| McKuskey  | J122    | 649737  | 5797992  | s.pt.     |         | 0        | s.pt |        | 0        |
| McKuskey  | J123    | 649184  | 5798442  | 5         | 600     | 0.4057   | Med  | 4      | 1        |
| McKuskey  | J124    | 648114  | 5800164  | 5         | 800     | 0.1838   | Low  | 3      | 2        |
| McKuskey  | J125    | 647204  | 5801760  | 5         | 300     | 0.0208   | None | 3      | 1        |
| McKuskey  | J126    | 646776  | 5801937  | 1         |         | 0.0208   | None | 1      | 1        |
| McKuskey  | J127    | 646864  | 5799789  | 5         | 600     | 0.0208   | None | 3      | 6        |
| McKuskey  | J01     | 651171  | 5795336  | 5         | 400     | 0.0208   | None | 4      | 2        |
| McKuskey  | J02     | 650845  | 5795292  | 5         | 400     | 0.0208   | None | 4      | 2        |
| McKuskey  | J03     | 650223  | 5796043  | 5         | 600     | 0.0208   | None | 4      | 4        |
| McKuskey  | J04     | 650072  | 5796203  | 5         | 600     | 0.855    | High | 4      | 3        |
| McKuskey  | J05     | 650026  | 5796265  | 8         |         | 0.887    | High | 4      | 2        |
| McKuskey  | J06     | 649941  | 5796314  | 5         | 450     | 0.8893   | High | 4      | 2        |
| McKuskey  | J07     | 649546  | 5796548  | 5         | 600     | 0.8452   | High | 4      | 2        |

| McKuskey | J08 | 648128 | 5797178 | 4     |     | 0.3563 | Low  | 4 | 4 |
|----------|-----|--------|---------|-------|-----|--------|------|---|---|
| McKuskey | J09 | 648344 | 5797049 | 6     |     | 0.3785 | Low  | 4 | 3 |
| McKuskey | J10 | 648907 | 5796779 | 5     | 600 | 0.0208 | None | 4 | 1 |
| McKuskey | J11 | 648551 | 5797518 | 5     | 500 | 0.3934 | Low  | 4 | 2 |
| McKuskey | J12 | 648244 | 5798019 | 5     | 900 | 0.8575 | High | 4 | 2 |
| McKuskey | J13 | 647764 | 5798361 | 5     | 500 | 0.95   | High | 4 | 3 |
| McKuskey | J14 | 647592 | 5798662 | 5     | 800 | 0.9025 | High | 4 | 5 |
| McKuskey | J15 | 647569 | 5799079 | 5     | 500 | 0.2078 | Low  | 4 | 3 |
| McKuskey | J16 | 647573 | 5799303 | 5     | 600 | 0.5953 | Med  | 4 | 3 |
| McKuskey | J17 | 647534 | 5799375 | 5     | 500 | 0.2227 | Low  | 4 | 3 |
| McKuskey | J18 | 647467 | 5799562 | 5     | 500 | 0.3638 | Low  | 4 | 3 |
| McKuskey | J19 | 647433 | 5799911 | 5     | 600 | 0.4747 | Med  | 4 | 4 |
| McKuskey | J20 | 647194 | 5800861 | 5     | 500 | 0.6662 | Med  | 4 | 2 |
| McKuskey | J21 | 647199 | 5798045 | s.pt. |     | 0      | s.pt |   | 0 |
| McKuskey | J22 | 647098 | 5798204 | 5     | 600 | 0.9    | High | 5 | 6 |
| McKuskey | J23 | 647136 | 5798381 | 5     | 600 | 0.95   | High | 4 | 6 |
| McKuskey | J24 | 647128 | 5798385 | 5     | 500 | 0.9    | High | 6 | 6 |
| McKuskey | J25 | 646920 | 5799172 | 5     | 600 | 0.8623 | High | 3 | 6 |

# **APPENDIX 4- Inventory of disturbed channel reaches**

No disturbed (i.e. unstable ) reaches identified along the mainstem of McKuskey Creek .

# APPENDIX 5 – Selected photographs






Photograph # 1417 Skyes-fire sub-drainage looking downstream

Photograph #1375. Recent slope failure in Lower McKuskey

### APPENDIX 5 – Selected photographs



Photograph #Site J13, score=0.95 (High), ineffective ESC.